ВТОРОЙ ЭТАП РАБОТ ПО ИССЛЕДОВАНИЮ УРОВНЕЙ ЗАГРЯЗНЕНИЯ СНЕЖНОГО ПОКРОВА В АРКТИКЕ

В.Ф.РАДИОНОВ, С.Э.КОГАН (ААНИИ), С.УОРРЕН, Т.ГРЕНФЕЛ (УНИВЕРСИТЕТ ДЖ..ВАШИНГТОНА, СИЭТЛ, США)

Весной 2008 г продолжены экспедиционные исследования уровней загрязнения снежного покрова частицами углерода (сажи) в Российской Арктике. Работы выполнялись в рамках проекта МПГ 2007/08 «Сажа в арктическом снеге и льде и ее влияние на альбедо поверхности» («Black carbon in Arctic snow and ice, and its effect on surface albedo»). Цель проекта - получить количественные оценки уровней загрязнения снежного покрова, ледников и морского льда в Арктике аэрозольными частицами, значи-

Рис. 1. Измерения плотности снега в окрестностях Черского. С.Коган проводит измерения, Т.Гренфел записывает результаты

Рис. 2. Отбор проб снега около Тикси. С.Уоррен отбирает пробы, Т.Гренфел ведет записи

тельную долю которых составляет сажа, и определить эффект их влияния на отражательные свойства (альбедо) заснеженных и ледовых поверхностей. Необходимость такой информации определяется ключевой ролью альбедо поверхности в формировании радиационного режима системы Земля-атмосфера. Тем самым изменения альбедо сущетственным образом влияют на изменения климата.

По результатам измерений за пределами Российской Арктики в 1983-1984 гг. концентрация сажи в снежном покрове изменялась от 5 до 50 частей на миллион (ppb). В российской части Арктики в те годы такие измерения не проводились. За прошедшие 25 лет изменились траектории атмосферного переноса загрязнений из антропогенных источников в умеренных широтах в Арктику. Кроме того, уменьшились объемы загрязняющих веществ, выбрасываемых из этих источников в атмосферу. Наблюдения на Алерте (82° с.ш., 62° з.д.) показали, что концентрации частиц сажи в воздухе уменьшались с 1990 до 2000 г, а затем вновь началось медленное возрастание их концентрации в атмосферном воздухе. Новых же сведений об уровнях загрязнения снежного покрова за прошедший период, вплоть до настоящего времени, не было.

Первый этап натурных измерений концентраций аэрозольных частиц в снежном покрове проводился в апреле-мае 2007 г. в западной части Российской Арктики в окрестностях Нарьян-Мара, Воркуты, Диксона и Хатанги.

Рис. 3. Т.Гренфел фильтрует растаявшие пробы снега в лаборатории Чукотского УГМС в Певеке

Средние концентрации сажевого аэрозоля в пробах снега ($C_{\mbox{\tiny bc}}$) в различных пунктах в Арктике

Место отбора проб	C ₅ ppb
Нарьян-Мар	13
Воркута	300
Диксон	12
Хатанга	38
Якутск	28
Тикси	28
Черский	25
Билибино	22
Певек	20
Акватория моря Лаптевых	13

Второй этап измерений продолжился на территории Республики Саха (Якутия) и Чукотского автономного округа в апреле-мае 2008 г. В нем участвовали Стефен Уоррен (Stephen Warren) и Томас Гренфел (Thomas Grenfell), профессора университета Дж.Вашингтона (Сиэтл, США), и сотрудник ААНИИ Станислав Коган. Существенную помощь в организации работ оказали участникам экспедиции персонал Якутского и Чукотского УГМС, Института мерзлотоведения СО РАН в Якутске, северовосточной научной станции в Черском.

Пунктами базирования экспедиции были Якутск, Тикси, Черский, Билибино и Певек.

Пробы снега отбирались на расстояниях 50¬ 90 км от населенных пунктов по различным направлениям от них. Затем эти пробы уже в лаборатор¬ ных условиях быстро растоплялись в микроволно¬ вой печи и вода фильтровалась через поликарбонатные фильтры с диаметром пор 0,4 мкм. Степень почернения фильтров из-за осевших на них аэрозоль¬ ных частиц, включая и частицы сажи, характеризует уровень загрязнения отобранной пробы снега.

Количественные характеристики содержания загрязняющих частиц в пробе определяются сравтиением вновь отобранных фильтров со «стандартными» с известными уровнями загрязнения.

Предварительные результаты измерений средней концентрации сажи в пробах, полученные за два экс¬ педиционных сезона, представлены в таблице. Во всех пунктах, за исключением Воркуты, концентрации са¬ жевого аэрозоля в снеге низки и не превосходят средних значений, измеренных 25 лет назад за пределами Российской Арктики. По-видимому, даже на расстояниях более 30 км от Воркуты, где отбирались пробы, влияние угольных шахт сказывается на сте¬ пени загрязнения окружающей среды.

Дополнительно к береговым пунктам участники российско-германской экспедиции Transdrift-XIII отобрали пробы снега на льду моря Лаптевых. Измеренные там концентрации частиц сажи оказались столь же низкими (13 ppb), как и измеренные в 2007 г. на о. Диксон и в окрестностях Нарьян-Мара.

Проведенный этап экспедиционных работ заверт шил полевые исследования в Российской Арктике.

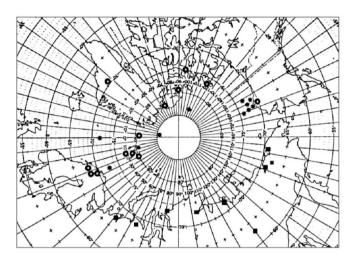


Рис. 4. Места отбора проб воздуха (звездочки), проб снежного покрова (кружки) в 1983-1984 гг. и проб снежного покрова (квадраты) в Российской Арктике в 2007 и 2008 гг.

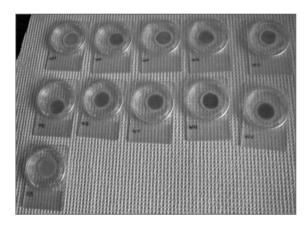


Рис. 5. Образцы осажденных на фильтры аэрозольных загрязнений проб снега в окрестностях Тикси. Большая степень почернения означает более высокий уровень загрязнения

Фильтры с осажденными на них аэрозольными част тицами и жидкие пробы снега отправлены в Лабот раторию атмосферных исследований Университета Вашингтона в Сиэтле, США. Там они вместе с пробами, отобранными в Гренландии, в Центральном Арктическом бассейне, на Аляске, в Канаде и Канадском Арктическом архипелаге, на Шпицбергене, в Норвегии, будут исследоваться спектральным фотометрическим методом и на электронном микроскопе для более точного определения характеристик загрязнения снежного покрова и арктических ледников, структуры и состава аэрозольных частиц.

Результаты этих исследований впервые позволят определить современные уровни аэрозольного загряз нения поверхности в Российской Арктике и сравнить их с наблюдающимися в других арктических регионах.

Результаты исследований будут доступны всем участникам проекта. Информация о ходе проекта и имеющихся данных размещается на сайте www.atmos.washington.edu/sootinsnow.

Фотографии предоставлены авторами